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INTRODUCTION

The idea of estimating the state of a system based on observed data has

been the focal point of much research. The concept of least squares and curve

fitting was introduced by Gauss in the early 1800s. In more recent times,

Norbert Wiener2 was asked to solve an important specific World War II problem:

-How can optimum properties for servmechanisms be formulated and specified?"
Wiener formulated a general solution to this problem based on rigorous proba-

. bilistic approaches. Among his works, "The Wiener Filter" is widely acclaimed

today as a cornerstone of modern estimation theory. Over the pest decade and

a half, modern sequential estimation theory has been caming of age. Kalman3

and Kalman and Bucy 4 brought modern estimation theory into the limelight with

their historical publications, "A New Approach to Linear Filtering and Pre-

diction Theory" and "New Results in Linear Filtering and Prediction Theory."

Scientists, engineers, statisticians, mathematicians, and technical personnel

faced with the problem of estimating the behavior or monitoring the state

variables of a physical system find themselves relying heavily on modern

estimation theory. The problem is not an easy one in that the choice of the

estimation technique, in many cases, is problem-dependent. There are many

criteria available to specify the methodology for estimating a parameter or
variable. Ho and Lee5 discuss three choices: a) most probable estimate: b)
conditional mean estimate; and c) minimax estimate. Jacquot6 presents a

1. Gauss, K. F., Theory of Motion of the Heavenly Bodies, Dover, 1963.

2. Wiener, N., The Extrapolation, Interpolation, and Smoothing of Stationary
Time Series with Engineering Applications, MIT Press, 1949.

3. Kalman, R. 3., A New Approach to Linear Filtering and Prediction Theory,
Trans ASME, (Journal of Basic Engineering) ser D, vol 82, pp 35-45, March
1960.

4. Kalman, R. 3., and R. S. Bucy, New Results in Linear Filtering and Pre-
diction Theory, Trans ASME, (Journal of Basic Engineering), ser D, vol
83, pp 95-108, March 1961.

5. Ho, V. C., and R. C. K. Lee, A Bayesian Approach to Problems in Sto-

chastic Estimation and Control, IEEE Trans Automatic Control, vol AC-9,
pp 333-339, October 1969.

6. Jacquot, R. G., Modern Digital Control, Marcel Dekker, Inc, 1981.

• C,..*-., . -, ,'. . ,..,..... .. * , .' C-...,,, ., .. . . . .



detailed derivation of the classical discrete-time vector Kalman filter where

the system of interest is governed by the stochastic matrix-vector difference

equation

x(k + 1) Ax(k) + w(k) + Bu(k) (1)

with the measurement process defined by

z(k) = Hx(k) + v(k). (2)

In equation (1), x(k) is an n X I vector; A is an n X n state transition

matrix; B is an n X j distribution matrix; and w(k) and u(k) are n X I and j X

1 vectors, respectively. The stochastic sequence w(k) is defined as the state

or process noise. In equation (2), the measurement equation, z(k) is an r X 1

. vector of observations, H is an r X n measurement matrix, and v(k) is the r X

1 vector of measurement noise.

The assumptions will be made that the noises w(k) and v(k) are sta-
tionary, Gaussian random sequences. The problem is to obtain the best esti-

mate of x(k) such that the conditional mean square error

J = 1/2 E[x T(k) (k)IZ] (3)

is minimized. The estimation error x(k) is given as

i(k) - x(k) - x(k). (4)

The notation Zk A (W), z(2), ..., z(k)} is used to represent the past

observation or measurement set. The vector %(k) is the estimate of the true

vector x(k). The conditional mean square error of (3) is conditional on the
past observations or measurements. The estimation process is formalized in

'a,
the following algorithm:

;(k) - AR(k - 1) + q + Bu(k - 1) (5)

.4 i,2



P(k) - A(k - l)AT + Q. (6)

Observation Residual:

y(k) - z(k) - Hi(k). (7)

Kalman Gain:

K(k) - P(k) HT[HP(k)lHT + R]1 . (8)

Estimation Equations:

Measurement update-

x(k) - x(k) + K(k)(y(k) - r - HBu(k - 1) - Hq] (9)

Covariance update-

k- (k) - K(k)HP(k). (10)

A sequence which is of extreme importance in the field of estimation is

termed the innovations sequence and is defined as the observation residual

given by equation (7).

This development of the estimation problem is the classical problem for

known statistics is, R and Q are known quantities; also, the noise sequences

have the properties

E[v(k)] - r (11)

and

Z[w(k)] - q. (12)

3
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The classical problem also assumes that if the system is driven by a deter-

ministic forcing function, it is completely known for all time.

The noise covariance matrix Q is defined by

QE [w(k)- q][w(k)- q] T (13)

where w(k) is the random forcing sequence of expression (1) and q as defined

in relation (12), wnere the mean has been assumed not to be a function of time

or k. The observation noise covariance matrix R is given as

R - E I[v(k) - r] [v(k) - 4T )

where v(k) is the measurement noise sequence and r is the expected value of

v(k).

Figure I presents a block diagram of a system model, measurement system,

and discrete Kalman filter. The system model is a discrete representation of

a continuous system being observed at discrete times by a measurement system.

The assumptions are that u(k) and w(k) are constant over the sampling inter-

val; ie,

w(t) = w(k)i kT t <(k + I)T (15)

and

u(t) - u(k)i kT t <(k + I)T (16)

where T is the sampling interval.

4
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Figure 1. System model and conventional discrete Kalman filter.

A further assumption is that knowledge of the forcing function exists;l thus

the Kalman filter, as illustrated in figure 1, reflects this knowledge. Con-
sider now the case where a system is being forced by forcing functions u(k)

and w(k) and the noise corrupted output is observed by a sensor. The deter-

ministic forcing function, u(k), is fast varying with respect to time. It is

desired to formulate estimates of the value of the state variables in a timely

manner by using a Kalman f ilter; however, for this case, knowledge of the
system forcing function, u(k), is unknown to the filter. A problem of equal
importance in the case where the statistics of the process noise, w(k), are
unknown. An excellent treatment of estimation in the presence of unknown
noise statistics is presented in Myers and Tapley . Empirical estimators are

developed in reference (7] which estimate the noise statistics.

41

For the case at hand, state estimation without knowledge of the deter-
ministic forcing functions, several modifications are incorporated into the

estimtion process. These include adaptive weighting of the elements of the

7. Myers, K. A. and B. D. Tapley, Adaptive Sequential Estimation with
Unknown Noise Statistics, IZZE Trans Automatic Control, vol AC-21,
pp 520-523, August 1976.
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conventional Kalman gain and covariance matrices, as well as robust statis-
tical smoothing of the estimates made by the adaptive Kalman filter using themodified gain and covariance matrices. Pigure 2 illustrates the estimation
process with the modifications incorporated. The assumptions are that the

noises w(k) and v(k) are stationary, Gaussian, random sequences. The modified
gain matrix A[K(k)] is defined in the next section as well as the robust

statistical smoothing procedure.

LS SM ADAPTIVEWEIGHTING4w(k) I vlk) h
ulk) + ik + +. k-RBUT x(l

B- DELAY H A(K- -L SMOOTHER
+ 

+

IMEA UREM NTS] AD PTIV EST MATO .i SMOTITICA L

Figure 2. Adaptive robust estimation.

Two concepts are investigated in this paper; 1) adaptive weight functions
for the Kalman filter gain and error covariance matrices, and 2) robust

smoothing of the estimated state variables.

Robust smoothing can be applied to both the observed and nonobserved
state variables. The concept of robust statistical smoothing of nonobserved
variables is addressed in Groutage , where it is applied to the maneuvering

target tracking problem.

Basically, two robust statistical procedures are used for the robust
smoothing of the estimated state variables:

1) robust measure of spread, and

6
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2) robust measure of location.

Details on these robust statistics are found in Bickel
8 and Huber9 , The

concepts of using adaptive weights for Kalman filter gain and covariance

matrices are presented in (10].

ROBUST ESTIMATION OF OBSERVED STATE VARIABLES BY USING ADAPTIVE WEIGHTS
FOR GAIN AND ERROR COVARIANCE MATRICES

The concepts presented here are empirical in nature; ie, they are based

on observations and experimental data. An intuitive perception of these con-

cepts can be obtained by examining the Kalman filtering algorithm for a scalar

parameter. Consider the scalar system with process noise w(k)

x(k + 1) - a x(k) + w(k) (17)

and the associated measurements

z(k) - x(k) + v(k). (18)

The covariance associated with the process noise is

E[w 2(k)] - Q (19)

and the measurement noise covariance is

E(v 2(k)] - R. (20)

8. Bickel, P. J., One-Step Huber Estimates in the Linear Model, Journal of
the American Statistical Association, vol 70, no 350, pp 428-433, June
1975.

9. Huber, P. J., Robust Estimation of a Location Parameter, The Annals of
Mathematical Statistis, vol 15, no 1,. pp 73-101, March 1964.

10. Oroutage, F. D., Ak ve oust Sequential Estimation with Application
to Tracking a Maneuv-_,n~g Target, PhD Dissertation, Department of Elec-
trical Engineering, University of Wyoming, May 1982.

7



The noises w(k) and v(k) are zero mean, Gaussian random sequences. The Kalman

filter equations for this scalar case, which formulate estimates of the single

r :state variable x(k), are:

Propagation Equations

x(k) = a (k - 1) (21)

- 2
P(k) = a2f(k - I) + Q (22)

Gain Relationship

c(k) = (23)
.(k) + R

Estimation Equations

-(k) = x(k) + c(k)(z(k) - x(k)] (24)

(k) = [I - c(k)]P(k). (25)

Equation (26) for estimating the state variable x(k) contains interesting

information concerning the estimation process. Note that the scalar gain,

c(k), is bounded from above and below as

0 < c(k) < 1. (26)

For the case when c(k) = 0, equation (24) indicates that total faith is placed

in the estimation process. In fact, the measurements are ignored and the pre-

vious estimate is the updated estimate. Now consider the case where c(k) = 1.

For this limit, equation (24) indicates that there will be no faith in the

*estimation process. In fact, the current measurement for the updated estimate

of the state variable is used. With these concepts in mind, the idea of a

pseudogain, a(k), is investigated. Let

A Bi)-vB(k)

a(k) 1 + e- (k)c(k) - e (27)

8
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where v and O(k) are parameters to be established and v can be a constant.

The observation residual, y(k), is defined as the difference between the

measurement and the propagated state estimate

y(k) - z(k) - x(k). (28)

Now consider the recursive sample mean of the observation residual sequence

and the recursive sample variance of the residual sequence Let the sample

space be N and let y(k) designate the recursive sample mean of the observa-

tion residual sequence; ie,

k

.y - y(j). (29)NA j=k-N + 1

Let a2 (k) designate the recursive sample variance (see appendix A) of the
'I y

observation residual sequence; ie,

2 -2 1 [2 - 2
a 2(k) - y2(k 1) + N {[y(k) yk)]2  [y(k N y(k)

+ N- [y(k) - y(k - N ]2}. (30)

If the parameter O(k) of equation (27) is chosen in the following manner

O(k) 2 y 2(k) (31)

then a(k) is a function of the dispersion of the residuals y(k). The value of

the constant, y (a weighting factor), must be determined. Equation (27) is

now interpreted. Note that in the limit as 0(k) * 0, the pseudogain ap-

proaches the Kalman filter gain or

lim a(k) - c(k) (32)
0(k)'O

p.9
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and for the limit as 0(k) . w

.-lim k) = 1. (33)
I:: '. 8( k)-.m

Thus for a small dispersion of the residuals, the gain is the optimum Kalman

gain c(k). For a large dispersion of the residuals, no faith is given to the

estmatonprocess.

From practical experiments, it was found that a robust weighting function

for the propagated error covariance P(k) was also required. The modified

'* error covariance was defined as

O'(k) P(k) + f'[1 - 134)

where

MP'k) = MlkMPlk). (35)

For the scalar case, where a(k) is defined as e y

-Va (k) a ay (k) -v a (k)
O'(k) = e P(k) + e [1 -e 1. (36)

ay (k)
The quantity, e is limited to some a priori upper bound, T. This is

illustrated in figure 3. Note that for a small dispersion of the residuals
2(k) approaches zero], the modified error covariance O'(k) of expression
y

(38) approaches the Kalman propagated error covariance P(k) or

lia '(k) = PI(k)

a (k) , 0 (37)

10
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Figure 3. Influence curve of sample variance for observation residual.

For the other limit, that is, when the dispersion of the residuals is large

[a 2(k) becomes largel, the term 81(k) approaches the a priori upper bound, or

y
Sli's 0(k) = T (38)

Note that the gain, c(k), is also bounded when the dispersion of the residuals

is large; ie,

T
lisT + R (39)

4" A 2
a: (k) *, - T-

y

These concepts for the scalar case, robust weighting of the Kalman gain and

error covariance matrices, are expanded to the vector case. Note that for the

scalar case, the gain and covariance matrices are also scalars.

•
t ~i 11
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ADAPTIVE GAIN MATRIX WEIGHTING

.To be useful in an adaptive filter, expression (27) must be expanded to

the vector dynamic case. This is accomplished with the A[K(k)] matrix (for

linear measurements or pseudolinear measurements) similar to the a (k) function

for the scalar case of equation (27), When the measurements are linear,

A(K(k)] will replace the Kalman gain matrix K(k) in the estimation algorithm.

Consider a matrix A[K(k)] defined as

A[K(k) - (I' + EK(k) - F] (40)

where I', E and F are n X r, n X n, and n X r matrices, respectively. Recall

that x(k) and z(k) are n X I and r X 1 vectors, respectively. The individual

matrices of equation (42) can best be explained through example. Consider the

linear system of figure 4. This system is driven by a deterministic forcing

function, u(t), and process noise, w(t). The output is observed discretely

with a sensor system. The measurements, z(k), made by the sensor are cor-

rupted by a noise sequence v(k). The measurement equation is thus

" z(k) x k) + v(k). (41)

IFORCING wit) SFUNCTIONS + I vk)

X2t | t T I +k,

U t I I I

r' ." IL._ LINEAR SYSTEM .D I ISCRETEIN R

tMEASUREMENTS

L~b ,°;.Figure 4. Linear system example.

C.!
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In matrix form,

.(k) - D 0) + v(k). (42)

[ Ix21 (k)I

For this example, the I', Z, and F matrices are defined as follows:

[;].?: I' "" I(43)

01

3- -Ok 01 (44)
.1

F - ~ k (45)

I0

where O(k) is an defined in relation (31). It should also be recalled that

for this case the K(k) matrix is a 2 X 1 vector.

ADAPTIVE IROR COVARIANCE MATRIX WEIGHTING

The equivalent matrix formulation of expression (36) is

9'k) - P'(k) + F'(I - (). (46)

Again, the individual matrices of (46) can best be explained through applica-

tion to the linear problem of figure 4. The propagated error covariance

matrix, i(k), is partitioned into three separate matrices. The following

notation is introduced

P(k) - L(k) + D(k) + V(k) (47)

where L(k) is a lower triangular matrix with zeros on the diagonal, D(k) is a

diagonal matrix, and V(k) is an upper triangular matrix with zeros on the

diagonal. The P'(k) matrix is defined as

13
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P'(k) - V(k) + I D(k) + L(k) (48)

where the I matrix is a diagonal matrix. The individual elements of the I

-v. 2(k) 2isasplvaaneothih

matrix are of the form e i Yi where Y is a sample variance of the ith

observation residual sequence. For the case when all state variables are

2 .measured, then all of the diagonal elements of I would be of the form
2 A2-V2a (k) -V a (k)

e The ith diagonal element, Iii, is e i • For the
problem at hand, where only discrete measurements of the output variable,

xI (), are available

F A21

E - 0 (49)

"-."0 1

and

F - e y1 0 (50)

For a case where measurements of both state variables, x1(k) and x 2(k),

were available the Z and F' matrices would be as follows:

-V
1 dy

1 m 0 (51)

I -vS 2(k)

0 • 2

14



*, , - ,- * = = ... ,' *.... . - ..-..- * 9_- . -. . . . . *' . " .* "-.. .* . '  - ' : "

SYl 0 (52)

0 e 2 Y2

The quantities e I and e 2 would be limited similarly as shown

in figure 3 to upper bounds of T1 and T2 , respectively.

Both the adaptive Kalman gain and error covariance weighting procedures

were incorporated into the algorithm of equations (5) through (10). It was

determined through experimentation that these robust adaptive procedures were

most effective if they were activated only after the sample variance of the

innovations sequence reached a predetermined threshold level. As a rule of

thumb, the threshold was taken to be one and one-half the anticipated value of

the standard deviation of the observation noise.

ROBUST SMOOTHING

The estimates of the state variables made by the Kalman filter with the

modified gain and covariance matrices contain periodic outliers. This is a

result of the sampling procedure and the way in which the sample statistics of

the innovations sequence are utilized to formulate weights for the elements of

the gain and covariance matrices. To alleviate the outliers in the state

estimates, a robust statistical smoothing procedure was incorporated into the

estimation procedure. The robust smoother uses a regression procedure in the

following manner. Consider n samples of estimates of the ith state variable

xM(k) where the samples are defined as the set

i - (ti(Ik - n-1), Ai(k - n), i (k - n+l), l . (53)

It is desired to find a weighted-least-squares solution for the straight-line

regression fit through the n samples of the estimates of the ith state vari-

able, over the discrete interval spanned from discrete time k-n-1 to

15
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• "time k. The specific weighted-least-squares solution for the straight-line

regression case (ie, 0 = B0 + B1 k + E) is given by the formulas

[(w )(j - n 2 -(54) ')

. Sand
J - 3 (55)

0 1
'2.1

When n, the sample size, is an odd integer, x' is defined as

n - -- + 1 (56)

2

and Y is defined as

J1. (57)

n-W.
j=1

The weighting term, Wi, which appears in equations (54) and (57), is called

the biweight (See Mosteller and Tukey 11), which is an abbreviation for bi-

square weight. Observations (meaning a sample of a random variable) are

weighted according to the relationship

We- e2 2iI < 1(58)

I0 elsewhere

11. Nosteller, F., and J. W. Tukey, Data Analysis and Regression, Addison-
Wesley Publishing Company, 1977.

16



where

- (59)

1ca

and ti is the ith observation with t the estimate of location based on n

observations,

N
" |t ei ti]
i- i (60)N

V(ei)
i01

A robust measure of scale is defined in [12] as

8- (nterquartile Distance) (61)
2(0.6745)

where the interquartile range is defined as the third quartile minus the first

quartile and thus gives the length of the interval in which the middle 50

percent of the data fall. Flor mples that arise from Gaussian distributions,

s is an estimate of a, the standard deviation. The value of the constant c is

arbitrary. To have a feel for the range of the value of c, note that with

cs - 40. (62)

Discrete values of the weighted-least-squares solution along the regres-

sion line are obtained from the relationship

0 + 01E for k - 1, 2, ... , n (63)

12. Launer, R. L., and G. W. Wilkinson, Robustness in Statistics, Academic
Press, New York, 1979.

17
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where 00 and 0 1 are defined by equations (55) and (54). The vertical dis-

tances from regression line of (63) to individual data points at the n dis-
crete times are called residuals and defined by the relationship

r(j) - (k - j - 1) - t(j) for j - 1, 2, ..., n. (64)

The above expressions of (63) and (64) are used in formulating the robust

smoothing procedure illustrated in figure 2. This robust procedure is imple-

mented by using the weighted-least-squares solution of (63) to project n - 1

past values of the estimates (as formulated by the adaptive filter) of the ith

state variable up to the present discrete time, t - k. The n - I past values

of the estimates of the ith state variable; ie,

Ni (k - n - 1), (k- n), ..., i(k- 1)) (65)

are projected to discrete time t - k and define n values of the random vari-

able, J Mky is,

x JM - (k) + r(j) for j - 1, 2, ... , n. (66)

The newly formed random variable, xJ(k), is smoothed by using the relationship

n V

J i'M n (67)

where IM'(k) is the smoothed value of the estimated value of the ith state

variable as generated by the modified gain and covariance Kalman filter. A

new estimate, at discrete time k+I, of the ith state variable is generated,

xi'(k+1), which is subsequently smoothed by means of the above process; how-

ever, the sample space now spans the discrete time interval from time k-n to

time k+1. The aple set A of equation (53) is now defined as

- (fi(k n),i(k - n+1, . (k + 1)) (68)
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A n weighted-least-squares solution for the straight-line regression fit

through the n samples is found and the process repeats as outlined above.

Note that the solution of the nonlinear relationships of (54), (57), and

(67) are obtained from an iterative procedure. Equations (54), (57), and (67)

are nonlinear as a result of the bisquare weight function, W, given by the

relationship of equation (60).

SIMULATION RESULTS

The system of figure 4 (with a - 2.0 and b - 3.0) was simulated on a

digital computer; a simulated sensor monitored the output, x1 (t), where the

output was measured discretely in time and corrupted by sensor noise, v(k).

The measurement noise, v(k), was zero mean with a variance of 25. The system

was driven by a deterministic forcing function u(t). No process noise, w(t),

was added to the system forcing function. The deterministic forcing function

was a pulse with a duration of 22 seconds and a magnitude of 500 units, as

illustrated in figure 5. Also shown in figure 5 are records of the values, as
functions of time, of the state variables x2 (t) and x 1 (t). The output x 1 (t)

was ampled at a rate of five times per second.

X SYSTEM FORCING FUNCTION

Z 00 X4400

1300 x2 lt)

100

2 4 0 I 10 12 14 16 18 20 22 24 26 28 30
TIME, second,

Figure 5. System forcing function and values of state variables.
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A conventional Kalman filter, without any a priori knowledge of the

forcing function, u(t), or the time at which the forcing function was initi-

ated, was used to process the measurement data z(k) . The conventional Kalman

K:. filter did not detect the influence of the deterministic forcing function on

the state variables, as illustrated in figure 6. Since a priori data dictated

that there was no process noise, the elements of the Kalman filter gain matrix

associated with the observed variables approach zero; thus the estimation

process has severed itself from the measurement process and ignores new data

brought forth by additional measurements.

ESTIMATES OF VALUES
OF STATE VARIABLE
USING ADAPTIVE FILTER

100 (NO ROBUST SMOOTHING) TRUE VALUES OF

ago STATE VARIABLE
I.- 0 -

o W V W

70

40-

f 30 ESTIMATES OF VALUES
OF STATE VARIABLE USING

20 CONVENTIONAL NONADAPTIVE
KALMAN FILTER

10

12 4 6 810120 2224

*" TIME, seconds

Figure 6. Estimation using adaptive Kalman filter without robust
.smoothing compared to estimation using nonadaptive conventional

Kalman frdter.

When the elements of the Kalman filter gain and covariance matrices are

weighted by the adaptive procedure outlined above (sample statistics of the

innovations sequence are used to adapt the respective weights), the filter no

longer divorces itself from the measurement process. Additional data brought

forth by the measurement process are used to update the estimates of the state

variables. This is illustrated in figure 6. However, since the adaptive

procedure uses ample statistics, the estimates contain periodic outliers.

20



q7
S77

The filter will run for a period of time, then monitor the innovations se-

quence to update the adaptive weights. It is this monitoring of the innova-I tions sequence to obtain new information which causes the periodic outlier to
appear in the estimates. The subsequent processing of the adaptive estimates

by a robust smoother reduces the level of mean square error and the periodic

outlier*.

The smoothed estimates of the measured output state variable, x IkM, are

shown in figure 7. Figure 8 presents an overlay of the records of figures 6

and 7 over a 5-second expanded time interval.

CONCLUSIONS

State variable estimation in the presence of unknown a priori system

information (noise statistics, forcing functions, and system dynamics) is not

an easy problem. There are no clear-cut solutions. This paper addresses only

one of the above problems (no information about the system deterministic
forcing functions).* The concepts presented relative to this particular prob-

* lem address the limited class of linear system dynamics with associated linear
measurements. Nonlinear system dynamics with associated linear measurements,

however, are not precluded.

Estimates of the state variables using the adaptive process for the
system during the periods when the system is not being forced are relatively

close to those of the conventional Kalman filter for congruent periods, but

there is sm degeneration because the estimator is no longer optimal. During

the periods when the system is being forced, a vast improvement, as compared

with those estimates of the conventional Kalman filter, is realized with the

;5 adaptive gain, covariance weight, and associated robust smoothing procedure.

The estimates derived with the adaptive procedure during the periods of system

4 forcing do, however, contain a considerable level of mean-square error. This

seems to be a prevailing shortfall of adaptive estimation procedures. The

tradeoff is knowing more about the values of the state variables (less mean

error) against more mean square error in the respective estimates.
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Soo-0 VALUES OF STATE TRUE VALUES OF STATE VARIABLES ..%,

0
z

70

60

40-

30-

20

10 -

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 TIME, seconds

Figure 7. Estimation using adaptive Kalman filter with robust smoothing.
:.

10 -WITH ROBUST SMOOTHING

90

So WITHOUT ROBUST
SMOOTH IN G

.. 70

t 60
z
0

p 40

30

20 -

10

10.0 11.0 12.0 13.0 14.0 15.0
TIME, seconds

Figure 8. Comparison of filtering techniques with and without robust smoothing.
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APPENDIX A

DERIVATION OF RECURSIVE ESTIMATORS FOR SAMPLE STATISTICS

Presented in this appendix, the derivations of the recursive estimators

for the sample mean and sample variance based on N observations.

RECURSIVE SAMPLE MEAN

The expression for the recursive estimator for the sample mean at time

tk-1 is
k-1

n(k- 1) = n(j). (A.1)
t j=k-N

The expression for the recursive estimator for the sample mean at time t ,..

k
.(k) n(j). (A.2)

W., ;.N + 1

I

Equation (A.1) is subtracted from (A.2) to give

k k1
n(k) - n(k - 1) - n(j) -(j) (A.3)

t jk-N +1 jk-NI

When the terms under the summation of (A.3) are expanded out and appropriate

cancellations take place, the recursive estimator for the sample mean at time

tk is given as

n(k) - n(k - 1) L (n(k) - n(k - N£)] (A.4)
N1

24
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RECURSIVE SAMPLE VARIANCE

The expression for the recursive estimator for the sample varLance at

time t k is
. k

2 k) N Y In(j) - £(k)] (A.5)
n J=k-N +1

Equation (A.5) is rewritten as

21 )2 1~2
a (k) I {([n(k) - n(k)] - (n(k - N ) - An(k)n NI-1 £

k-1 2
+ (n(j) - R(k)}. % (A.6)

J-k-N1

When the expression for the sample mean, (A.4), is substituted into the summa-

tion term of the above expression, (A.6), it can be rewritten as

21 - 2 2)on (k) - - ((n(k) - n(k)) - (n(k N (k]

k-1

i+ ( (j) -( - 1))- - (n(k) - n(k - Nt)) J2). (A.7)
J-k-N L
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r":" Expanding the terms under the sumation qives

2' 2

a (k) - {[n(k) - ;(k)2 - (n(k - N1 ) - n(k)1
n N

k-2
+ iN [(ni) - ik - ,,)) - - (ni - a(k-1))

J)-k-N 9

(n(k) - a(k-N) --- (lk) - n(k-N.))2 )). (A.8)

N L

The cross terms under the summation of the above expression of (A.8) can be

showm to be zero, thus,

S(k) .- (In(k) -(k)] - [n(k N n(k)I

k-I 2

+ 5' 1)h -a -I) + j(n(k) - ^(k-H 24 ) (A~.9)

3-k-N, +  NI.

Note that by definition

k-i

a nn(k-1) - (n(j) -(k - 1) (A.10)
S-k-N

thus, the recursive estimator for the sample variance is

.4-2 2 12
a (k) - (k - 1) + (rn(k) - n(Q)] - In(k - N
n n I

;?(k)j 2 +I (n(k) - n(k - Nt)]2. (A.,11)
NI

4

26


